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Abstract 18 

The newly developed semi-analytical scheme (Lee et al. 2015a) for remote sensing of the 19 

Secchi disk depth (ZSD, m) was modified and applied to Landsat-8 data to obtain high-spatial-20 

resolution map of water clarity. In order to implement the quasi-analytical algorithm (QAA) for 21 

the derivation of absorption and backscattering coefficients from Landsat-8 data, which are key 22 

optical properties for the estimation of ZSD, the representative wavelengths of Landsat-8 bands in 23 

the visible domain are verified; so are the absorption and backscattering coefficients of pure 24 

water for these bands. This semi-analytical scheme was then applied to a dataset having both in 25 

situ measurements of ZSD (~0.1-30 m) and remote-sensing reflectance and found that the 26 

estimated ZSD from remote sensing matches measured ZSD very well (R2 = 0.96, average absolute 27 

percent difference ~17%, N = 197). This scheme was further applied to a Landsat-8 image 28 

collected in an estuary to obtain high-spatial resolution ZSD map, and the obtained spatial 29 

distribution of ZSD is found quite consistent with in situ measurements and visual observations. 30 

These results indicate an important application of Landsat data - to provide reliable high-31 

resolution water clarity product of bays, estuaries, and lakes with a unified mechanistic system. 32 

 33 

 34 
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1. Introduction 37 

Coastal and inland waters are important ecosystems for all lives on Earth. They provide 38 

important sanctuary for phytoplankton and aquatic animals, resources for recreation activities, 39 

and supply of fresh waters for various industries and city dwellers. During the recent decades, 40 

from factors of human activities to climate variations, the quality of these water bodies is under 41 

significant stress; and there are more and more frequent occurrences of hazardous events, such as 42 

harmful algae blooms, in these ecosystems. Adequate, accurate, and consistent monitoring of 43 

these water bodies is a high priority for local and federal government agencies.  44 

One of the water quality parameters routinely measured is water clarity (or water 45 

transparency) using a Secchi disk (Arnone et al. 1984; Binding et al. 2007; Bukata et al. 1988; 46 

Fleming-Lehtinen and Laamanen 2012; Stumpf et al. 1999) - a white or black-and-white disk 47 

with a diameter ~30 cm. The depth of this disk when it is no longer viewable by an observer at 48 

surface is called the Secchi disk depth (ZSD, m). The value of ZSD provides a direct and intuitive 49 

representation of the clarity of a water body; and water clarity is a first order description of the 50 

quality status of an aquatic environment, where there have been millions of measurements of ZSD 51 

in the past 100+ years in both oceanic and inland water bodies (Boyce et al. 2012). However, due 52 

to the inherent limitation from ship surveys, it is infeasible to have adequate and repetitive 53 

observations over large areas and/or multiple lakes from shipborne surveys, although it is 54 

excellent to provide detailed characterizations of a few isolated locations. Measurements by 55 

airborne or space-borne sensors are the only feasible means to achieve large scale and long-term 56 

observations of water clarity of aquatic environments.  57 
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Satellite systems aimed at water's biogeochemical properties are the ocean color satellite 58 

sensors, such as the CZCS of the 1970's and the SeaWiFS/MODIS/MERIS of the 1990's and 59 

2000's (IOCCG 1999). These sensors have a few narrow (~20 nm in bandwidth) spectral bands 60 

in the visible domain, and analyses of the radiance measured at these bands can provide 61 

quantitative information of water constituents (e.g., concentration of chlorophyll or suspended 62 

particulate matter) (IOCCG 2000) and water clarity (Doron et al. 2011; Shang et al. 2010). These 63 

systems have a spatial resolution of ~300 m or coarser, which although have shown great 64 

applications in coastal zones or large size lakes (Miller and McKee 2004; Petus et al. 2010), run 65 

into difficulties to provide adequate measurements for bays, estuaries and many lakes, 66 

ecosystems that require much higher spatial resolution for its observations. 67 

The Landsat series (thematic mapper and the enhanced thematic mapper) have 2 or 3 wide 68 

(50 nm or more in bandwidth) spectral bands in the visible domain (Roy et al. 2014) which were 69 

found useful for the remote sensing of some water constituents that include water clarity 70 

(Brezonik et al. 2005; Giardino et al. 2001; Olmanson et al. 2008). In particular, because of the 71 

30 m spatial resolution of the Landsat data, it is "ideal" for synoptic observations of bays and 72 

lakes, and a wide range of publications and applications can be found in the literature (Clark et al. 73 

1987; Dekker et al. 2005; Zhang et al. 2003; Zhou et al. 2006). One worthnoting example of such 74 

applications is the large scale and long-term monitoring of ZSD of the 10's of thousands of 75 

Minnesota lakes from the 20+ years of Landsat data (Olmanson et al. 2008), which show a clear 76 

contrast of water clarity of the many lakes and their variations for a two-decade period. The 77 

approach used for that effort and many other studies (Binding et al. 2007; Brezonik et al. 2005), 78 

however, was purely empirical. Such kind of schemes have two inherent limitations: 1) it 79 

requires many and wide range of match-up in situ measurements for the derivation of the 80 
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algorithms coefficients, and; 2) the empirical coefficients are data or location/region dependent, 81 

thus the algorithm is not portable for application to other lakes or bays. 82 

To overcome such limitations in empirically retrieving ZSD from remote sensing, it has long 83 

been desired to have a mechanistic algorithm for the derivation of ZSD from ocean color 84 

measurements. An earlier attempt was that of Doron et al (2011), where the derivation for ZSD 85 

was based on a theoretical ZSD model developed from the classical underwater visibility theory 86 

(Duntley 1952; Preisendorfer 1986). It was found that, however, the estimated ZSD from ocean 87 

color satellite data show large differences when compared with match-up in situ measurements 88 

(Doron et al. 2011). This poor performance was reviewed in detail recently (Lee et al. 2015a) 89 

and it was concluded that the most likely reason for the discouraging results is that the classical 90 

model for ZSD does not match the physical processes of sighting a Secchi disk in water by the 91 

human eye. A new underwater visibility theory was then proposed and a new mechanistic model 92 

for ZSD has been established (Lee et al. 2015a). This model was subsequently evaluated with 93 

concurrent measurements (~300 stations, ZSD in a range of ~0.1 - 30 m) of ZSD and remote 94 

sensing reflectance in a wide range of environments and obtained an unbiased absolute percent 95 

difference of ~18% between model estimated and in situ measured ZSD (Lee et al. 2015a), and 96 

the difference changes to merely ~23% for a MODIS-in situ matchup dataset (where there was a 97 

time difference of ± 6 hours between MODIS and in situ measurements) [Shang et al, 2015, 98 

submitted]. These results indicate a robust performance of the model and algorithm for the 99 

estimation of ZSD from ocean color measurements, which further inspired us to extend this 100 

mechanistic scheme to Landsat-8 (L8 in the following) data for observation of water clarity of 101 

small water bodies. This paper describes the details of estimating ZSD from L8 data, where the 102 

remote-sensing reflectance (the input for ZSD estimation) of L8 is generated with Acolite 103 
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(Vanhellemont and Ruddick 2015a, b). The overarching goal is to generate ZSD product of bays, 104 

estuaries, and lakes with a unified mechanistic data processing system. 105 

2. Methods 106 

2.1 Model of the Secchi-disk depth 107 

Historically, ZSD has been modeled as an inverse function of the beam attenuation coefficient 108 

(c) and the diffuse attenuation coefficient (Kd) of downwelling irradiance (Duntley 1952; 109 

Preisendorfer 1986). Recently, through a careful and thorough review of the physics of sighting 110 

of a Secchi disk by a human eye, it was found that the classical model of ZSD (Aas et al. 2014; 111 

Preisendorfer 1986; Zaneveld and Pegau 2004) does not represent the observation of our eyes 112 

(Lee et al. 2015a). Following the new underwater visibility theory, the Secchi-disk depth is 113 

inversely proportional to the diffuse attenuation coefficient and can be expressed (Lee et al. 114 

2015a) 115 
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Here tr
dK is the diffuse attenuation coefficient at the transparent window of the water body within 117 

the visible domain (410 - 665 nm), with tr
rsR  the remote-sensing reflectance corresponding to this 118 

wavelength. Therefore what is needed for the estimation of ZSD is information of tr
dK from L8 119 

measurements. 120 

 121 

2.2 The overall scheme to analytically retrieve IOPs from remote sensing reflectance 122 
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Through analytical derivations of the radiative transfer equation, it has been found that Kd is 123 

a function of the sun zenith angle and the inherent optical properties (IOPs) (Preisendorfer 1976) 124 

of the upper water column, in particular the absorption (a) and backscattering (bb) coefficients 125 

(Gordon 1989; Lee et al. 2013). Thus, the key to obtain tr
dK from L8 measurements is to derive a 126 

and bb from L8 data. Although various analytical or semi-analytical algorithms have been 127 

developed in the past decades for the retrieval of IOPs from measurements of ocean color 128 

(IOCCG 2006), no such algorithms yet were developed to process Landsat data. Because of the 129 

mathematical simplicity and physical transparency, here we adopt the quasi-analytical algorithm 130 

(QAA) (Lee et al. 2002) for the retrieval of a and bb from the remote sensing reflectance of L8 131 

(represented as 8L
rsR , sr-1), and processing steps are briefly described below.  132 

In general, for Rrs observed in the nadir direction, it can be converted to its subsurface 133 

counterpart (rrs, sr-1) following (Lee et al. 2002) 134 
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Through modeling of the radiative transfer function, rrs is a function of the ratio of bb/(a+bb) and 136 

can be expressed as (Gordon et al. 1988) 137 
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Here g0 (= 0.089 sr-1) and g1 (= 0.125 sr-1) are model constants (Lee et al. 2002). From this 139 

quadratic function, there is 140 
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where u = bb/(a+bb). Thus, for any wavelength where there exist measurements of rrs, knowing a 142 

will enable the analytical derivation of bb; vice versa. Following this logic, QAA starts with the 143 

estimation of a at a reference wavelength (λ0) 144 

)()()( 000  aaa w  .          (5) 145 

Where aw is the absorption coefficient of pure water and assumed as a constant, Δa(λ0) is the 146 

contributions from non-water constituents and estimated empirically from rrs spectrum (Lee et al. 147 

2002) [http://www.ioccg.org/groups/software.html].  148 

After a(λ0) is known, bb(λ0) is solved from Eq. 3 (Lee et al. 2002), which leads to 149 
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where bbw and bbp are the backscattering coefficients of pure seawater and particles, respectively. 151 

Further the bbp values at other wavelengths are estimated following a power-law function 152 

(Gordon and Morel 1983) 153 
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with the exponent η estimated empirically from the rrs spectrum 155 

[http://www.ioccg.org/groups/software.html]. Since u(λ) is available from rrs(λ), a(λ) can then be 156 

easily derived after bbp(λ) is known 157 

            ubbua bpbw /1  .      (8) 158 
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Following the radiative transfer equation, Kd(λ) is a function of a(λ) and bb(λ) and can be 159 

modeled as(Lee et al. 2013) 160 
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Here m0-3 and γ are model parameters and their values are 0.005, 4.26, 0.52, 10.8, and 0.265, 162 

respectively. θs (in degrees) is the solar zenith angle in air.  163 

 164 

2.3 Algorithm parameters for implementing QAA with L8 band setting 165 

For processing hyperspectral or MODIS or SeaWiFS remote sensing measurements, λ0 is 166 

designated as 55x or 670 nm (Lee et al. 2002) [http://www.ioccg.org/groups/software.html], 167 

whereas the required values for aw(λ0) and bbw(λ0) are determined based on aw and bbw spectra 168 

reported in the literature (Morel 1974; Pope and Fry 1997; Zhang et al. 2009). For L8, however, 169 

because some bands (Band 2 and Band 3 in particular) have a bandwidth ~60 nm, it is necessary 170 

to designate a representative wavelength for each band in order to properly propagate the optical 171 

properties from one band to another (e.g., Eq. 7). Also, it is required to determine the 172 

corresponding aw and bbw values for each band in order to implement QAA for L8 data. 173 

The listed center wavelengths for the first four L8 bands are 443, 483, 561, and 655 nm, 174 

respectively (Franz et al. 2015; Vanhellemont and Ruddick 2015b). Fundamentally, because the 175 

reflectance of each wide band is a weighted average of the corresponding hyperspectral 176 

reflectance (see Eq. 10 below), the listed center wavelengths of these L8 bands may not 177 

necessarily reflect the representative wavelengths of an interested target if the reflectance of this 178 

target is strongly spectral dependent within a spectral window of ~50 nm. To obtain the 179 
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representative wavelength of L8 bands for aquatic environments, remote sensing reflectance of 180 

equivalent L8 bands ( 8L
rsR )  of a set (901 spectra) of hyperspectral Rrs measured in oceanic and 181 

coastal environments (Lee et al. 2014) were calculated by including the response function of 182 

each band (Gordon 1995) 183 
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Here RSRi is the response function of L8 band number i (Bi), and the hyperspectral (400-800 nm, 185 

5-nm resolution) Rrs (Lee et al. 2014) were interpolated to 1-nm resolution for this calculation. 186 

For each L8 band, the calculated  i
L
rs BR 8  were then compared with hyperspectral Rrs for 187 

wavelengths (λj) within ± 10 nm of the listed center wavelengths, respectively, and the slope and 188 

bias in linear regression were calculated for each pair of  i
L
rs BR 8  vs Rrs(λj). Table 1 presents 189 

results (bias and |slope - 1.0|) of a few of these pairs. Based on these statistical values, it is 190 

appeared that the center wavelengths of the L8 visible bands presented in the literature are 191 

generally applicable for aquatic environments. For Band 3, however, it is found that the most 192 

representative wavelength (slope close to 1.0 and a bias closed to 0) is 554 nm (see Fig. 1), 193 

instead of the listed 561 nm (close to 0 bias, but slope is ~0.96), although both wavelengths have 194 

a coefficient of determination (R2) > 0.99 when compared with  3
8 BRL

rs . This might be in part 195 

because the absorption coefficient of pure water increases rapidly (a factor of ~4) from 520 nm 196 

to 600 nm (Pope and Fry 1997), and Rrs of aquatic environments are generally much higher (at 197 

least for this dataset) in the shorter than in the longer wavelengths for wavelength domain of B3, 198 

therefore the spectrally weighted average (Eq. 10) at this band will have a tendency tilting to the 199 

shorter wavelength. Without losing the generality and for easy processing of L8 image, 554 nm 200 
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is employed as the representative wavelength for L8 Band 3 in this effort, although the impact on 201 

the estimation of bbp at short wavelengths (see Eq. 7) is generally less than 2% for this 202 

modification. 203 

After the verification of the representative wavelengths for the L8 bands in the visible 204 

domain, the other parameters required to be determined for the implementation of QAA is 205 

 i
L
w Ba 8  and   i

L
bw Bb 8 . Because Rrs is proportional to the backscattering coefficient (Eq. 3), 206 

band-averaged  i
L
bw Bb 8  of the first four bands were calculated following the scheme to obtain 207 

band-averaged Rrs, 208 
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with hyperspectral bbw spectrum from Zhang et al (2009).  210 

On the other hand, because Rrs is inversely proportional to the absorption coefficient, band-211 

averaged  i
L
w Ba 8  were obtained from a two-step process: 212 
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The hyperspectral (5-nm original resolution, interpolated to 1-nm resolution) aw spectrum for the 215 

400-800 nm range used in the above calculation is a combination of the results of Lee et al 216 
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(2015b) (400 - 545 nm), Pope and Fry (1997) (550 - 720 nm), and Kou et al (1993) (725 - 800 217 

nm). The resulted  i
L
w Ba 8  and   i

L
bw Bb 8  are presented in Table 2. 218 

Further, since there are no significant differences between the representative wavelengths of 219 

L8 bands and those of SeaWiFS bands, the default algorithm coefficients used in the current 220 

version of QAA [http://www.ioccg.org/groups/software.html] to estimate Δa(λ0) were applied 221 

for the L8 band settings. With the above-derived aw and bbw values for L8, a and bb of the first 222 

four L8 bands can be adequately derived from 8L
rsR  following the steps described in Section 2.2; 223 

subsequently Kd of these bands can be calculated based on Eq. 9.  224 

 225 

2.4 Spectral gap filling 226 

Sighting a Secchi disk in water represents measurements of optical signal in the most 227 

transparent window of the water (Aas et al. 2014; Lee et al. 2015a), which was found can be well 228 

characterized with measurements around 440, 490, 530, 555, and 670 nm (Lee et al. 2015a). L8, 229 

however, has only four wide bands centered at ~443, 481, 554 and 656 nm in the visible domain, 230 

thus lacks a band focused at the 500-530 nm window that covers waters more transparent at these 231 

wavelengths. Although there is also a wide spectral gap between 554 and 656 nm, extremely few 232 

waters having a transparent window in this spectral range, thus this window is not important for 233 

the determination of ZSD, as evidenced for the wide range of environments reported in Lee et al 234 

(2015a). To fill the spectral gap around 530 nm, we developed an empirical relationship based on 235 

the dataset used in Lee et al (2015a). In that study, Kd(488), Kd(530), and Kd(555) were all 236 

estimated independently from the measured Rrs spectrum; and, through multiple regression 237 

analysis, it was found that  238 
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)555(75.0)488(20.0)530( ddd KKK  .          (13) 239 

Figure 2 compares Eq. 13 estimated Kd(530) with that derived from Rrs(530), where the unbiased 240 

average absolute percent difference is ~6.9% (R2 = 0.99, N = 338). Such results provide us the 241 

confidence to estimate Kd(530) from values of Kd(488) and Kd(555). Thus, by assuming no 242 

significant difference in attenuation coefficients for the small wavelength differences, Kd(530) 243 

for L8 band setting is approximated as 244 

)554(75.0)481(20.0)530( 888 L
d

L
d

L
d KKK  .        (14) 245 

Therefore, with Kd at 443, 481, 554, and 656 nm retrieved semi-analytically from 8L
rsR , and 246 

Kd(530) estimated from Kd(481) and Kd(554), a spectral minimum Kd of a water body can then be 247 

determined from the multiband Kd data, and ZSD can be calculated following Eq. 1. In this 248 

calculation, because 8L
rsR  is significantly smaller than the remote-sensing reflectance of a white 249 

disk, there was no attempt to find the 8L
rsR value corresponding to 530 nm, and tr

rsR  in Eq. 1 was 250 

determined as the maximum Rrs value among wavelengths of 443, 481, 554, and 656 nm. 251 

 252 

3. Results 253 

A dataset of 197 sites (see Fig. 6 of Lee et al (2015a) for locations) containing concurrent 254 

measurements of ZSD and hyperspectral Rrs is used to evaluate the performance of the above-255 

described semi-analytical scheme to estimate ZSD from L8 band settings. Measurements of ZSD 256 

were carried out conventionally with a standard 30 cm white disk. Measurements of 257 

hyperspectral Rrs were carried out from above the sea surface with a GER 1500 (350 - 1000 nm, 258 
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3 nm resolution) following the Ocean Optics Protocols (Mueller et al. 2003), with the processing 259 

steps detailed in Shang et al (2011). The equivalent L8 Rrs of these measurements were derived 260 

following Eq. 10, subsequently a, bb, and Kd of the L8 bands were derived with the steps 261 

described in Section 2.2, which further led to semi-analytically estimated ZSD following Eq. 1. A 262 

nominal sun angle of 30o from zenith was used for the calculation of Kd  of all stations. 263 

The comparison between ZSD derived from simulated- 8L
rsR  and in situ ZSD is shown in Fig. 3. 264 

Statistically, the R2 value in linear regression analysis between the two ZSD datasets (in a range of 265 

~0.1 - 30 m) is 0.96, along with average unbiased absolute percent difference as 16.7%. These 266 

results are almost identical to that obtained from multispectral narrow-bandwidth Rrs (see Fig. 6 267 

of Lee et al (2015a)), suggesting robust ZSD retrievals from 8L
rsR . This may not be too surprising 268 

because ZSD value represents a measurement of the bulk water property, whereas the band 269 

settings of L8 also provide an observation the bulk water. It deserves an emphasis, however, that 270 

during this evaluation there was no algorithm tuning to fit the measured ZSD values for the wide 271 

range of environments encountered. It is the same algorithm used for the derivation of ZSD for all 272 

locations covering clear oceanic and turbid coastal waters. Such features ensure reliable and 273 

consistent ZSD retrievals from 8L
rsR  for different regions or areas as long as the quality of 274 

8L
rsR derived from L8 images is  acceptable. On the other hand, it is necessary to point out that the 275 

upper limit of this ZSD dataset is ~30 m, thus not so sure yet of the potentials of using L8 to 276 

monitor ZSD of super blue waters where the transparent window might be in the 400-450 nm 277 

range, a window not clear if L8 has enough signals from such waters. 278 

 279 

4. Demonstration with a Landat-8 image 280 
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The scheme described in Section 2 was applied to an L8 image to obtain a high-spatial 281 

resolution (30 m) water clarity map of an estuary, whereas the sensor specifics of L8 can be 282 

found in Roy et al (2014) and Franz et al (2015). This image (LC81190432013216LGN00) was 283 

collected on August 4, 2013 and the targeted area is the Jiulongjiang River estuary off Xiamen 284 

city, China (see Fig. 4a and Fig. 4b for the location). The selection of this L8 image was because 285 

that there were measurements of both ZSD and hyperspectral remote sensing reflectance in this 286 

area (the three red circles in Fig. 4b) eleven days ago (July 24, 2013), with ZSD as 0.4, 0.8, and 287 

1.4 m at P1, P2 and P3, respectively. 288 

The analytical approach to retrieve ZSD requires 8L
rsR as inputs, which was generated with the 289 

Acolite algorithm detailed in Vanhellemont and Ruddick (2015b). As a crude evaluation of the 290 

quality of Rrs retrieved with Acolite, Fig. 4c shows 8L
rsR  from L8 and 8L

rsR calculated from 291 

hyperspectral Rrs of the three points marked in Fig. 4b. Because there was an 11-day temporal 292 

gap between the L8 observation and in situ measurements and this is a highly dynamic estuary, 293 

there are obvious differences in Rrs values (especially at P1), but overall 8L
rsR  appeared valid and 294 

consistent with this turbid aquatic system. And, all three locations have the maximum 8L
rsR  at 295 

Band 3; because Kd is generally dominated by a and Rrs is inversely proportional to a, these 8L
rsR   296 

spectra indicate that the Kd values at Band 3 were used for the estimation of ZSD of these 297 

locations.  298 

The ZSD map of this area derived from L8 is shown in Fig. 4d. Generally there is a pattern of 299 

higher clarity (~2 m) further offshore while lower clarity (< ~0.3 m) closer to the river mouth; 300 

and the Jiulongjiang River has a water clarity generally less than 0.2 m - spatial patterns that are 301 

consistent with numerous visual observations of tourists and fishermen. For locations P1, P2 and 302 
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P3, ZSD values from the L8 data are ~0.3, ~0.6, and ~0.9 m, respectively; which are ~0.2, ~0.7, 303 

and ~1.3 m, respectively, from in situ hyperspectral Rrs. The in situ and L8 ZSD values do not 304 

exactly match each other; but the spatial gradient, i.e. an increase of ZSD from the inner estuary to 305 

the outer estuary, is consistent. There are certainly uncertainties associated with the ZSD 306 

algorithm (Lee et al. 2010; Lee et al. 2015a) and that of the derived Rrs from L8 measurements 307 

(Vanhellemont and Ruddick 2015b), which will contribute to the ZSD difference. However, the 308 

primary source of difference in the ZSD values here is most probably due to the gap in observation 309 

time (11 days). The Jiulongjiang River estuary is an area with a semi-diurnal tide; clearer sea 310 

water goes upstream at high tide, while turbid river water covers most of the estuary at low tide. 311 

ZSD at a locale could thus change within hours even in a day. 312 

 313 

5. Conclusions 314 

It is found that the spectral band setting of Landsat-8 is adequate for the estimation of Secchi 315 

disk depth (ZSD); and the accuracy of the semi-analytically estimated ZSD from L8 band setting is 316 

similar to that obtained from a SeaWiFS/MODIS-type dataset, at least for ZSD in a range of ~0.1 - 317 

30 m. These results provide an indirect support on the retrieval of water's total absorption and 318 

backscattering coefficients from L8 band settings with the quasi-analytical algorithm (Lee et al. 319 

2002) [http://www.ioccg.org/groups/software.html]. Further, as a demonstration, an application 320 

of the semi-analytical scheme for ZSD to an L8 image collected over a turbid estuarine area 321 

obtained reasonable ZSD values and consistent spatial patterns. These results suggest that the 322 

Acolite algorithm for atmosphere correction of Landsat-8 image (Vanhellemont and Ruddick 323 

2015b) is promising and support further the semi-analytical scheme for ZSD from L8 data. 324 
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However, because the quality of Rrs plays a critical role on the quantitative remote sensing of 325 

water properties, it demands substantial efforts from the community to develop robust processing 326 

systems to generate high-quality Rrs from L8 for various lake and estuary ecosystems; which also 327 

demands support and efforts to obtain more concurrent measurements to validate the Rrs and ZSD 328 

products from L8. 329 

 330 

 331 
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 460 

 461 

Figure captions: 462 

Figure 1. Relationship between )3(8 BRL
rs  and Rrs(554;561) for a wide range of aquatic 463 

environments. 464 

Figure 2. Kd(530) synthesized from Kd(488) and Kd(555) compared with Kd(530) derived from 465 

Rrs(530). 466 

Figure 3. Comparison between ZSD  derived  from simulated 8L
rsR  and in situ ZSD. The average 467 

unbiased absolute percent difference is ~17% with ZSD in a range of ~0.1 - 30 m. 468 

Figure 4. Application of the semi-analytic ZSD scheme to an L8 image over the estuary off 469 

Xiamen City, China. (a) Location of the targeted area. (b) Pseudo true color of the estuary from 470 

the L8 measurements. (c) 8L
rsR  from L8 compared with that from in situ measurements for the 471 

three red points in (b); solid lines for 8L
rsR  from in situ measurements, open symbols for 8L

rsR  472 

from L8. Note that there is an 11-day gap between the two observations. (d). ZSD map derived 473 

from 8L
rsR . 474 

  475 
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 476 

Table 1. Representative wavelength of Landsat-8 visible bands 477 

 478 

Band 1 (433-453 nm) 
Wavelength [nm] 441 442 443 444 445 

|Slope-1| 0.0042 0.0016 0.0014 0.0047 0.0084 

bias 0.00001 0.00001 0.00001 0.00002 0.00002 

Band 2 (450-515 nm) 
Wavelength [nm] 480 481 482 483 484 

|Slope-1| 0.0079 0.0025 0.0028 0.0082 0.0137 

bias -0.00015 -0.00013 -0.00012 -0.00011 -0.00009 

Band 3 (525-600 nm) 
Wavelength [nm] 553 554 555 556 557 

|Slope-1| 0.0039 0.0003 0.0048 0.0094 0.0143 

bias -0.00022 -0.00020 -0.00018 -0.00016 -0.00015 

Band 4 (630-680 nm) 
Wavelength [nm] 654 655 656 657 658 

|Slope-1| 0.0176 0.0099 0.0011 0.0089 0.0195 

bias 0.00000 0.00001 0.00002 0.00004 0.00005 

 479 

  480 
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 481 

Table 2. Absorption and backscattering coefficients of pure seawater for L8 visible bands. 482 
 483 

 Band 1 Band 2 Band 3 Band 4
aw (m-1) 0.005 0.011 0.064 0.368
bbw (m-1) 0.0021 0.0014 0.0008 0.0004

 484 

  485 
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 486 

 487 

 488 

Figure 1. Relationship between )3(8 BRL
rs  and Rrs(554;561) for a wide range of aquatic 489 

environments. 490 
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 493 

 494 

 495 

Figure 2. Kd(530) synthesized from Kd(488) and Kd(555) compared with Kd(530) derived from 496 

Rrs(530). 497 
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 500 

 501 

 502 

Figure 3. Comparison between  ZSD derived  from simulated 8L
rsR  and in situ ZSD. The average 503 

unbiased absolute percent difference is ~17% with ZSD in a range of ~0.1 - 30 m. 504 
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 506 

 507 

 508 

Figure 4. Application of the semi-analytic ZSD scheme to an L8 image over the estuary off 509 

Xiamen City, China. (a) Location of the targeted area. (b) Pseudo true color of the estuary from 510 

the L8 measurements. (c) 8L
rsR  from L8 compared with that from in situ measurements for the 511 

three red points in (b); solid lines for 8L
rsR  from in situ measurements, open symbols for 8L

rsR  512 

from L8. Note that there is an 11-day gap between the two observations. (d). ZSD map derived 513 

from 8L
rsR . 514 
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